
crypto
Copyright © 1999-2021 Ericsson AB. All Rights Reserved.

crypto 4.4.2.3
May 31, 2021

Copyright © 1999-2021 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 31, 2021

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1.1.1 OpenSSL License
/* ==
 * Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

2 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

1.1.2 SSLeay License
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

1.2 FIPS mode
This chapter describes FIPS mode support in the crypto application.

Ericsson AB. All Rights Reserved.: crypto | 3

1.2 FIPS mode

1.2.1 Background
OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
is validated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
• Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.

You should read and precisely follow the instructions of the Security Policy and User Guide.

Warning:

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not qualify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

• Configure and build Erlang/OTP with FIPS support:

$ cd $ERL_TOP
$./otp_build configure --enable-fips
...
checking for FIPS_mode_set... yes
...
$ make

If FIPS_mode_set returns no the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

• Set the fips_mode configuration setting of the crypto application to true before loading the crypto module.

The best place is in the sys.config system configuration file of the release.

• Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will all throw exception not_supported.

Entering and leaving FIPS mode on a node already running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in a critical section protected from any concurrently
running crypto operations. Furthermore in case of failure all crypto calls would have to be disabled from the Erlang
or nif code. This would be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds
The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(init|
update|final), hmac_(init|update|final) and stream_(init|encrypt|decrypt)) is different
and incompatible with regular builds when compiling crypto with FIPS support.

4 | Ericsson AB. All Rights Reserved.: crypto

href
href

1.2 FIPS mode

1.2.4 Common caveats
In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problems in application relying
on crypto.

Warning:

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes
Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA
1024 bit

DSS
1024 bit

EC algorithms
160 bit

Restrictions on elliptic curves
The Erlang API allows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing
Md5 is a popular choice as a hash function, but it is not secure enough to be validated. Try to use sha instead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switching to erlang:md5/1 as well.

Certificates and encrypted keys
As md5 is not available in FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain all certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithms which is a viable
alternative.

SNMP v3 limitations
It is only possible to use usmHMACSHAAuthProtocol and usmAesCfb128Protocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required
All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and sha1 hashes in the handshake for various
purposes:

• Authenticating the integrity of the handshake messages.

• In the exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

• In the PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

Ericsson AB. All Rights Reserved.: crypto | 5

1.3 Engine Load

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Note:

Certificates using weak (md5) digests may also cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TLS implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load
This chapter describes the support for loading encryption engines in the crypto application.

1.3.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

Note:

The file name requirement on the engine dynamic library can differ between SSL versions.

1.3.2 Use Cases
Dynamically load an engine from default directory
If the engine is located in the OpenSSL/LibreSSL installation engines directory.

1> {ok, Engine} = crypto:engine_load(<<"otp_test_engine">>, [], []).
 {ok, #Ref}

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

 2> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 []).
 {ok, #Ref}

Load an engine and replace some methods
Load an engine with the help of the dynamic engine and just replace some engine methods.

6 | Ericsson AB. All Rights Reserved.: crypto

1.4 Engine Stored Keys

 3> Methods = crypto:engine_get_all_methods() -- [engine_method_dh,engine_method_rand,
engine_method_ciphers,engine_method_digests, engine_method_store,
engine_method_pkey_meths, engine_method_pkey_asn1_meths].
[engine_method_rsa,engine_method_dsa,
 engine_method_ecdh,engine_method_ecdsa]
 4> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 [],
 Methods).
 {ok, #Ref}

Load with the ensure loaded function
This function makes sure the engine is loaded just once and the ID is added to the internal engine list of OpenSSL.
The following calls to the function will check if the ID is loaded and then just get a new reference to the engine.

 5> {ok, Engine} = crypto:ensure_engine_loaded(<<"MD5">>,
 <<"/some/path/otp_test_engine.so">>).
 {ok, #Ref}

To unload it use crypto:ensure_engine_unloaded/1 which removes the ID from the internal list before unloading the
engine.

 6> crypto:ensure_engine_unloaded(<<"MD5">>).
 ok

List all engines currently loaded
 5> crypto:engine_list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys
This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Thoose techniques are not described in this User's Guide. Here we concentrate on how
to use private or public keys stored in such an engine.

The storage engine must call ENGINE_set_load_privkey_function and
ENGINE_set_load_pubkey_function. See the OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for example in SSL. If using the crypto application directly, it is required that:

• an Engine is loaded, see the chapter on Engine Load or the Reference Manual

• a reference to a key in the Engine is available. This should be an Erlang string or binary and depends on the
Engine loaded

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

1.5 Algorithm Details

• an Erlang map is constructed with the Engine reference, the key reference and possibly a key passphrase if
needed by the Engine. See the Reference Manual for details of the map.

1.4.2 Use Cases
Sign with an engine stored private key
This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

1> {ok, EngineRef} = crypto:engine_load(....).
...
{ok,#Ref<0.2399045421.3028942852.173962>}
2> PrivKey = #{engine => EngineRef,
 key_id => "id of the private key in Engine"}.
...
3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
 207,177,124,183,156,185,160,243,36,79,125,230,231,...>>

Verify with an engine stored public key
Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
 key_id => "id of the public key in Engine"}.
...
5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key
The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
 key_id => "id of the pwd protected private key in Engine",
 password => "password"}.
...
7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).
<<140,80,168,101,234,211,146,183,231,190,160,82,85,163,
 175,106,77,241,141,120,72,149,181,181,194,154,175,76,
 223,...>>
8>

1.5 Algorithm Details
This chapter describes details of algorithms in the crypto application.

The tables only documents the supported cryptos and key lengths. The user should not draw any conclusion on security
from the supplied tables.

1.5.1 Ciphers
Block Ciphers
To be used in block_encrypt/3, block_encrypt/4, block_decrypt/3 and block_decrypt/4.

Available in all OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

8 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list with the
cipher tag in the return value of crypto:supports().

Cipher and Mode
Key length
[bytes]

IV length
[bytes]

Block size
[bytes]

aes_cbc 16, 24, 32 16 16

aes_cbc128 16 16 16

aes_cbc256 32 16 16

aes_cfb8 16, 24, 32 16 any

aes_ecb 16, 24, 32 16

aes_ige256 16 32 16

blowfish_cbc 4-56 8 8

blowfish_cfb64 #1 8 any

blowfish_ecb #1 8

blowfish_ofb64 #1 8 any

des3_cbc
(=DES EDE3 CBC)

[8,8,8] 8 8

des3_cfb
(=DES EDE3 CFB)

[8,8,8] 8 any

des_cbc 8 8 8

des_cfb 8 8 any

des_ecb 8 8

des_ede3
(=DES EDE3 CBC)

[8,8,8] 8 8

rc2_cbc #1 8 8

Table 5.1: Block cipher key lengths

AEAD Ciphers
To be used in block_encrypt/4 and block_decrypt/4.

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list with the
cipher tag in the return value of crypto:supports().

Ericsson AB. All Rights Reserved.: crypto | 9

1.5 Algorithm Details

Cipher and
Mode

Key length
[bytes]

IV length
[bytes]

AAD length
[bytes]

Tag length
[bytes]

Block size
[bytes]

Supported
with
OpenSSL
versions

aes_ccm 16,24,32 7-13 any
even 4-16
default: 12

any #1.1.0

aes_gcm 16,24,32 #1 any
1-16
default: 16

any #1.1.0

chacha20_poly130532 1-16 any 16 any #1.1.0

Table 5.2: AEAD cipher key lengths

Stream Ciphers
To be used in stream_init/2 and stream_init/3.

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list with the
cipher tag in the return value of crypto:supports().

Cipher and Mode
Key length
[bytes]

IV length
[bytes]

Supported with
OpenSSL versions

aes_ctr 16, 24, 32 16 #1.0.1

rc4 #1 all

Table 5.3: Stream cipher key lengths

1.5.2 Message Authentication Codes (MACs)
CMAC
To be used in cmac/3 and cmac/4.

CMAC with the following ciphers are available with OpenSSL 1.0.1 or later if not disabled by configuration.

To dynamically check availability, check that the name cmac is present in the list with the macs tag in the return
value of crypto:supports(). Also check that the name in the Cipher and Mode column is present in the list with the
cipher tag in the return value.

Cipher and Mode
Key length
[bytes]

Max Mac Length
[bytes]

aes_cbc 16, 24, 32 16

aes_cbc128 16 16

aes_cbc256 32 16

10 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

aes_cfb8 16 1

blowfish_cbc 4-56 8

blowfish_cfb64 #1 1

blowfish_ecb #1 8

blowfish_ofb64 #1 1

des3_cbc
(=DES EDE3 CBC)

[8,8,8] 8

des3_cfb
(=DES EDE3 CFB)

[8,8,8] 1

des_cbc 8 8

des_cfb 8 1

des_ecb 8 1

rc2_cbc #1 8

Table 5.4: CMAC cipher key lengths

HMAC
Available in all OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

To dynamically check availability, check that the name hmac is present in the list with the macs tag in the return
value of crypto:supports().

POLY1305
POLY1305 is available with OpenSSL 1.1.1 or later if not disabled by configuration.

To dynamically check availability, check that the name poly1305 is present in the list with the macs tag in the
return value of crypto:supports().

1.5.3 Hash
To dynamically check availability, check that the wanted name in the Names column is present in the list with the
hashs tag in the return value of crypto:supports().

Type Names
Supported with
OpenSSL versions

SHA1 sha all

SHA2 sha224, sha256, sha384, sha512 all

SHA3
sha3_224, sha3_256, sha3_384,
sha3_512

#1.1.1

Ericsson AB. All Rights Reserved.: crypto | 11

1.5 Algorithm Details

MD4 md4 all

MD5 md5 all

RIPEMD ripemd160 all

Table 5.5:

1.5.4 Public Key Cryptography
RSA
RSA is available with all OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that the atom rsa is present in the list with the public_keys tag in the return
value of crypto:supports().

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

Option sign/verify
public encrypt
private decrypt

private encrypt
public decrypt

{rsa_padding,rsa_x931_padding}x x

{rsa_padding,rsa_pkcs1_padding}x x x

{rsa_padding,rsa_pkcs1_pss_padding}
{rsa_pss_saltlen, -2..}
{rsa_mgf1_md, atom()}

x (2)
x (2)
x (2)

{rsa_padding,rsa_pkcs1_oaep_padding}
{rsa_mgf1_md, atom()}
{rsa_oaep_label,
binary()}}
{rsa_oaep_md, atom()}

x (2)
x (2)
x (3)
x (3)

{rsa_padding,rsa_no_padding}x (1)

Table 5.6:

Notes:

• (1) OpenSSL # 1.0.0

• (2) OpenSSL # 1.0.1

• (3) OpenSSL # 1.1.0

12 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

DSS
DSS is available with OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that the atom dss is present in the list with the public_keys tag in the return
value of crypto:supports().

ECDSA
ECDSA is available with OpenSSL 0.9.8o or later if not disabled by configuration. To dynamically check availability,
check that the atom ecdsa is present in the list with the public_keys tag in the return value of crypto:supports().
If the atom ec_gf2m characteristic two field curves are available.

The actual supported named curves could be checked by examining the list with the curves tag in the return value
of crypto:supports().

EdDSA
EdDSA is available with OpenSSL 1.1.1 or later if not disabled by configuration. To dynamically check availability,
check that the atom eddsa is present in the list with the public_keys tag in the return value of crypto:supports().

Support for the curves ed25519 and ed448 is implemented. The actual supported named curves could be checked by
examining the list with the curves tag in the return value of crypto:supports().

Diffie-Hellman
Diffie-Hellman computations are available with OpenSSL versions compatible with Erlang CRYPTO if not disabled
by configuration. To dynamically check availability, check that the atom dh is present in the list with the
public_keys tag in the return value of crypto:supports().

Elliptic Curve Diffie-Hellman
Elliptic Curve Diffie-Hellman is available with OpenSSL 0.9.8o or later if not disabled by configuration. To
dynamically check availability, check that the atom ecdh is present in the list with the public_keys tag in the
return value of crypto:supports().

The Edward curves x25519 and x448 are supported with OpenSSL 1.1.1 or later if not disabled by configuration.

The actual supported named curves could be checked by examining the list with the curves tag in the return value
of crypto:supports().

Ericsson AB. All Rights Reserved.: crypto | 13

1.5 Algorithm Details

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto
Application

The purpose of the Crypto application is to provide an Erlang API to cryptographic functions, see crypto(3). Note that
the API is on a fairly low level and there are some corresponding API functions available in public_key(3), on a higher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES
The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION
The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fips_mode = boolean()

Specifies whether to run crypto in FIPS mode. This setting will take effect when the nif module is loaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

rand_cache_size = integer()

Sets the cache size in bytes to use by crypto:rand_seed_alg(crypto_cache) and
crypto:rand_seed_alg_s(crypto_cache) . This parameter is read when a seed function is called, and
then kept in generators state object. It has a rather small default value that causes reads of strong random bytes
about once per hundred calls for a random value. The set value is rounded up to an integral number of words
of the size these seed functions use.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 15

href

crypto

crypto
Erlang module

This module provides a set of cryptographic functions.

Hash functions

SHA1, SHA2
Secure Hash Standard [FIPS PUB 180-4]

SHA3
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions [FIPS PUB 202]

MD5
The MD5 Message Digest Algorithm [RFC 1321]

MD4
The MD4 Message Digest Algorithm [RFC 1320]

MACs - Message Authentication Codes

Hmac functions
Keyed-Hashing for Message Authentication [RFC 2104]

Cmac functions
The AES-CMAC Algorithm [RFC 4493]

POLY1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Symmetric Ciphers

DES, 3DES and AES
Block Cipher Techniques [NIST]

Blowfish
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-
Verlag, 1994, pp. 191-204.

Chacha20
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Chacha20_poly1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Modes

ECB, CBC, CFB, OFB and CTR
Recommendation for Block Cipher Modes of Operation: Methods and Techniques [NIST SP
800-38A]

GCM
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
[NIST SP 800-38D]

CCM
Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality [NIST SP 800-38C]

Asymetric Ciphers - Public Key Techniques

16 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

RSA
PKCS #1: RSA Cryptography Specifications [RFC 3447]

DSS
Digital Signature Standard (DSS) [FIPS 186-4]

ECDSA
Elliptic Curve Digital Signature Algorithm [ECDSA]

SRP
The SRP Authentication and Key Exchange System [RFC 2945]

Note:

The actual supported algorithms and features depends on their availability in the actual libcrypto used. See the
crypto (App) about dependencies.

Enabling FIPS mode will also disable algorithms and features.

The CRYPTO User's Guide has more information on FIPS, Engines and Algorithm Details like key lengths.

Data Types
Ciphers
stream_cipher() = rc4 | aes_ctr | chacha20
Stream ciphers for stream_encrypt/2 and stream_decrypt/2 .

block_cipher_with_iv() =
 cbc_cipher() |
 cfb_cipher() |
 aes_cbc128 |
 aes_cbc256 |
 aes_ige256 |
 blowfish_ofb64 |
 des3_cbf |
 des_ede3 |
 rc2_cbc
cbc_cipher() = des_cbc | des3_cbc | aes_cbc | blowfish_cbc
cfb_cipher() =
 aes_cfb128 | aes_cfb8 | blowfish_cfb64 | des3_cfb | des_cfb
Block ciphers with initialization vector for block_encrypt/4 and block_decrypt/4 .

block_cipher_without_iv() = ecb_cipher()
ecb_cipher() = des_ecb | blowfish_ecb | aes_ecb
Block ciphers without initialization vector for block_encrypt/3 and block_decrypt/3 .

aead_cipher() = aes_gcm | aes_ccm | chacha20_poly1305
Ciphers with simultaneous MAC-calculation or MAC-checking. block_encrypt/4 and block_decrypt/4 .

Ericsson AB. All Rights Reserved.: crypto | 17

href
href
href
href

crypto

Digests
sha1() = sha
sha2() = sha224 | sha256 | sha384 | sha512
sha3() = sha3_224 | sha3_256 | sha3_384 | sha3_512
compatibility_only_hash() = md5 | md4
The compatibility_only_hash() algorithms are recommended only for compatibility with existing
applications.

rsa_digest_type() = sha1() | sha2() | md5 | ripemd160
dss_digest_type() = sha1() | sha2()
ecdsa_digest_type() = sha1() | sha2()

Elliptic Curves
ec_named_curve() =
 brainpoolP160r1 |
 brainpoolP160t1 |
 brainpoolP192r1 |
 brainpoolP192t1 |
 brainpoolP224r1 |
 brainpoolP224t1 |
 brainpoolP256r1 |
 brainpoolP256t1 |
 brainpoolP320r1 |
 brainpoolP320t1 |
 brainpoolP384r1 |
 brainpoolP384t1 |
 brainpoolP512r1 |
 brainpoolP512t1 |
 c2pnb163v1 |
 c2pnb163v2 |
 c2pnb163v3 |
 c2pnb176v1 |
 c2pnb208w1 |
 c2pnb272w1 |
 c2pnb304w1 |
 c2pnb368w1 |
 c2tnb191v1 |
 c2tnb191v2 |
 c2tnb191v3 |
 c2tnb239v1 |
 c2tnb239v2 |
 c2tnb239v3 |
 c2tnb359v1 |
 c2tnb431r1 |
 ipsec3 |
 ipsec4 |
 prime192v1 |
 prime192v2 |
 prime192v3 |
 prime239v1 |
 prime239v2 |

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

 prime239v3 |
 prime256v1 |
 secp112r1 |
 secp112r2 |
 secp128r1 |
 secp128r2 |
 secp160k1 |
 secp160r1 |
 secp160r2 |
 secp192k1 |
 secp192r1 |
 secp224k1 |
 secp224r1 |
 secp256k1 |
 secp256r1 |
 secp384r1 |
 secp521r1 |
 sect113r1 |
 sect113r2 |
 sect131r1 |
 sect131r2 |
 sect163k1 |
 sect163r1 |
 sect163r2 |
 sect193r1 |
 sect193r2 |
 sect233k1 |
 sect233r1 |
 sect239k1 |
 sect283k1 |
 sect283r1 |
 sect409k1 |
 sect409r1 |
 sect571k1 |
 sect571r1 |
 wtls1 |
 wtls10 |
 wtls11 |
 wtls12 |
 wtls3 |
 wtls4 |
 wtls5 |
 wtls6 |
 wtls7 |
 wtls8 |
 wtls9
edwards_curve_dh() = x25519 | x448
edwards_curve_ed() = ed25519 | ed448
Note that some curves are disabled if FIPS is enabled.

ec_explicit_curve() =
 {Field :: ec_field(),

Ericsson AB. All Rights Reserved.: crypto | 19

crypto

 Curve :: ec_curve(),
 BasePoint :: binary(),
 Order :: binary(),
 CoFactor :: none | binary()}
ec_field() = ec_prime_field() | ec_characteristic_two_field()
ec_curve() =
 {A :: binary(), B :: binary(), Seed :: none | binary()}
Parametric curve definition.

ec_prime_field() = {prime_field, Prime :: integer()}
ec_characteristic_two_field() =
 {characteristic_two_field,
 M :: integer(),
 Basis :: ec_basis()}
ec_basis() =
 {tpbasis, K :: integer() >= 0} |
 {ppbasis,
 K1 :: integer() >= 0,
 K2 :: integer() >= 0,
 K3 :: integer() >= 0} |
 onbasis
Curve definition details.

Keys
key() = iodata()
des3_key() = [key()]
For keylengths, iv-sizes and blocksizes see the User's Guide.

A key for des3 is a list of three iolists

key_integer() = integer() | binary()
Always binary() when used as return value

Public/Private Keys
rsa_public() = [key_integer()]
rsa_private() = [key_integer()]
rsa_params() =
 {ModulusSizeInBits :: integer(),
 PublicExponent :: key_integer()}

rsa_public() = [E, N]

rsa_private() = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C is the CRT coefficient. Terminology is taken from RFC 3447.

dss_public() = [key_integer()]
dss_private() = [key_integer()]

dss_public() = [P, Q, G, Y]

20 | Ericsson AB. All Rights Reserved.: crypto

href

crypto

Where P, Q and G are the dss parameters and Y is the public key.

dss_private() = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

ecdsa_public() = key_integer()
ecdsa_private() = key_integer()
ecdsa_params() = ec_named_curve() | ec_explicit_curve()
eddsa_public() = key_integer()
eddsa_private() = key_integer()
eddsa_params() = edwards_curve_ed()
srp_public() = key_integer()
srp_private() = key_integer()

srp_public() = key_integer()

Where is A or B from SRP design

srp_private() = key_integer()

Where is a or b from SRP design

srp_gen_params() =
 {user, srp_user_gen_params()} | {host, srp_host_gen_params()}
srp_comp_params() =
 {user, srp_user_comp_params()} |
 {host, srp_host_comp_params()}

srp_user_gen_params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom()]

srp_host_gen_params() = [Verifier::binary(), Prime::binary(), Version::atom()]

srp_user_comp_params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom() | ScramblerArg::list()]

srp_host_comp_params() = [Verifier::binary(), Prime::binary(), Version::atom() | ScramblerArg::list()]

Where Verifier is v, Generator is g and Prime is N, DerivedKey is X, and Scrambler is u (optional will be generated
if not provided) from SRP design Version = '3' | '6' | '6a'

Public Key Ciphers
pk_encrypt_decrypt_algs() = rsa
Algorithms for public key encrypt/decrypt. Only RSA is supported.

pk_encrypt_decrypt_opts() = [rsa_opt()] | rsa_compat_opts()
rsa_opt() =
 {rsa_padding, rsa_padding()} |
 {signature_md, atom()} |
 {rsa_mgf1_md, sha} |
 {rsa_oaep_label, binary()} |
 {rsa_oaep_md, sha}
rsa_padding() =
 rsa_pkcs1_padding |
 rsa_pkcs1_oaep_padding |

Ericsson AB. All Rights Reserved.: crypto | 21

href
href
href

crypto

 rsa_sslv23_padding |
 rsa_x931_padding |
 rsa_no_padding
Options for public key encrypt/decrypt. Only RSA is supported.

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

rsa_compat_opts() = [{rsa_pad, rsa_padding()}] | rsa_padding()
Those option forms are kept only for compatibility and should not be used in new code.

Public Key Sign and Verify
pk_sign_verify_algs() = rsa | dss | ecdsa | eddsa
Algorithms for sign and verify.

pk_sign_verify_opts() = [rsa_sign_verify_opt()]
rsa_sign_verify_opt() =
 {rsa_padding, rsa_sign_verify_padding()} |
 {rsa_pss_saltlen, integer()}
rsa_sign_verify_padding() =
 rsa_pkcs1_padding |
 rsa_pkcs1_pss_padding |
 rsa_x931_padding |
 rsa_no_padding
Options for sign and verify.

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

Diffie-Hellman Keys and parameters
dh_public() = key_integer()
dh_private() = key_integer()
dh_params() = [key_integer()]

dh_params() = [P, G] | [P, G, PrivateKeyBitLength]

ecdh_public() = key_integer()
ecdh_private() = key_integer()
ecdh_params() =
 ec_named_curve() | edwards_curve_dh() | ec_explicit_curve()

Types for Engines
engine_key_ref() =
 #{engine := engine_ref(),
 key_id := key_id(),

22 | Ericsson AB. All Rights Reserved.: crypto

crypto

 password => password(),
 term() => term()}
engine_ref() = term()
The result of a call to engine_load/3.

key_id() = string() | binary()
Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENGINE_load_(private|public)_key functions in libcrypto.

password() = string() | binary()
The password of the key stored in an engine.

engine_method_type() =
 engine_method_rsa |
 engine_method_dsa |
 engine_method_dh |
 engine_method_rand |
 engine_method_ecdh |
 engine_method_ecdsa |
 engine_method_ciphers |
 engine_method_digests |
 engine_method_store |
 engine_method_pkey_meths |
 engine_method_pkey_asn1_meths |
 engine_method_ec
engine_cmnd() = {unicode:chardata(), unicode:chardata()}
Pre and Post commands for engine_load/3 and /4.

Internal data types
stream_state()
hmac_state()
hash_state()
Contexts with an internal state that should not be manipulated but passed between function calls.

Exports

block_encrypt(Type :: block_cipher_without_iv(),
 Key :: key(),
 PlainText :: iodata()) ->
 binary()
Encrypt PlainText according to Type block cipher.

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths and blocksizes see the User's Guide.

block_decrypt(Type :: block_cipher_without_iv(),
 Key :: key(),
 Data :: iodata()) ->

Ericsson AB. All Rights Reserved.: crypto | 23

crypto

 binary()
Decrypt CipherText according to Type block cipher.

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths and blocksizes see the User's Guide.

block_encrypt(Type, Key, Ivec, PlainText) -> CipherText
block_encrypt(AeadType, Key, Ivec, {AAD, PlainText}) -> {CipherText,
CipherTag}
block_encrypt(aes_gcm | aes_ccm, Key, Ivec, {AAD, PlainText, TagLength}) ->
{CipherText, CipherTag}
Types:

Type = block_cipher_with_iv()

AeadType = aead_cipher()

Key = key() | des3_key()

PlainText = iodata()

AAD = IVec = CipherText = CipherTag = binary()

TagLength = 1..16

Encrypt PlainText according to Type block cipher. IVec is an arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, encrypt PlainTextaccording to Type block
cipher and calculate CipherTag that also authenticates the AAD (Associated Authenticated Data).

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths, iv-sizes and blocksizes see the User's Guide.

block_decrypt(Type, Key, Ivec, CipherText) -> PlainText
block_decrypt(AeadType, Key, Ivec, {AAD, CipherText, CipherTag}) -> PlainText
| error
Types:

Type = block_cipher_with_iv()

AeadType = aead_cipher()

Key = key() | des3_key()

PlainText = iodata()

AAD = IVec = CipherText = CipherTag = binary()

Decrypt CipherText according to Type block cipher. IVec is an arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, decrypt CipherTextaccording to Type block
cipher and check the authenticity the PlainText and AAD (Associated Authenticated Data) using the CipherTag.
May return error if the decryption or validation fail's

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths, iv-sizes and blocksizes see the User's Guide.

24 | Ericsson AB. All Rights Reserved.: crypto

crypto

bytes_to_integer(Bin :: binary()) -> integer()
Convert binary representation, of an integer, to an Erlang integer.

compute_key(Type, OthersPublicKey, MyPrivateKey, Params) ->
 SharedSecret
Types:

Type = dh | ecdh | srp
SharedSecret = binary()
OthersPublicKey = dh_public() | ecdh_public() | srp_public()
MyPrivateKey =
 dh_private() | ecdh_private() | {srp_public(), srp_private()}
Params = dh_params() | ecdh_params() | srp_comp_params()

Computes the shared secret from the private key and the other party's public key. See also public_key:compute_key/2

exor(Bin1 :: iodata(), Bin2 :: iodata()) -> binary()
Performs bit-wise XOR (exclusive or) on the data supplied.

generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:

Type = dh | ecdh | rsa | srp
PublicKey =
 dh_public() | ecdh_public() | rsa_public() | srp_public()
PrivKeyIn =
 undefined |
 dh_private() |
 ecdh_private() |
 rsa_private() |
 {srp_public(), srp_private()}
PrivKeyOut =
 dh_private() |
 ecdh_private() |
 rsa_private() |
 {srp_public(), srp_private()}
Params =
 dh_params() | ecdh_params() | rsa_params() | srp_comp_params()

Generates a public key of type Type. See also public_key:generate_key/1. May raise exception:

• error:badarg: an argument is of wrong type or has an illegal value,

• error:low_entropy: the random generator failed due to lack of secure "randomness",

• error:computation_failed: the computation fails of another reason than low_entropy.

Note:

RSA key generation is only available if the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will raise exception error:notsup.

Ericsson AB. All Rights Reserved.: crypto | 25

crypto

hash(Type, Data) -> Digest
Types:

Type =
 sha1() |
 sha2() |
 sha3() |
 ripemd160 |
 compatibility_only_hash()
Data = iodata()
Digest = binary()

Computes a message digest of type Type from Data.

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

hash_init(Type) -> State
Types:

Type =
 sha1() |
 sha2() |
 sha3() |
 ripemd160 |
 compatibility_only_hash()
State = hash_state()

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should
be used as argument to hash_update.

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

hash_update(State, Data) -> NewState
Types:

State = NewState = hash_state()
Data = iodata()

Updates the digest represented by Context using the given Data. Context must have been generated using
hash_init or a previous call to this function. Data can be any length. NewContext must be passed into the next
call to hash_update or hash_final.

hash_final(State) -> Digest
Types:

State = hash_state()
Digest = binary()

Finalizes the hash operation referenced by Context returned from a previous call to hash_update. The size of
Digest is determined by the type of hash function used to generate it.

26 | Ericsson AB. All Rights Reserved.: crypto

crypto

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:

Type = sha1() | sha2() | sha3() | compatibility_only_hash()
Key = Data = iodata()
MacLength = integer()
Mac = binary()

Computes a HMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

hmac_init(Type, Key) -> State
Types:

Type = sha1() | sha2() | sha3() | compatibility_only_hash()
Key = iodata()
State = hmac_state()

Initializes the context for streaming HMAC operations. Type determines which hash function to use in the HMAC
operation. Key is the authentication key. The key can be any length.

hmac_update(State, Data) -> NewState
Types:

Data = iodata()
State = NewState = hmac_state()

Updates the HMAC represented by Context using the given Data. Context must have been generated using an
HMAC init function (such as hmac_init). Data can be any length. NewContext must be passed into the next call
to hmac_update or to one of the functions hmac_final and hmac_final_n

Warning:

Do not use a Context as argument in more than one call to hmac_update or hmac_final. The semantics of reusing
old contexts in any way is undefined and could even crash the VM in earlier releases. The reason for this limitation
is a lack of support in the underlying libcrypto API.

hmac_final(State) -> Mac
Types:

State = hmac_state()
Mac = binary()

Finalizes the HMAC operation referenced by Context. The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_final_n(State, HashLen) -> Mac
Types:

Ericsson AB. All Rights Reserved.: crypto | 27

crypto

State = hmac_state()
HashLen = integer()
Mac = binary()

Finalizes the HMAC operation referenced by Context. HashLen must be greater than zero. Mac will be a binary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

cmac(Type, Key, Data) -> Mac
cmac(Type, Key, Data, MacLength) -> Mac
Types:

Type =
 cbc_cipher() |
 cfb_cipher() |
 blowfish_cbc |
 des_ede3 |
 rc2_cbc
Key = Data = iodata()
MacLength = integer()
Mac = binary()

Computes a CMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

info_fips() -> not_supported | not_enabled | enabled
Provides information about the FIPS operating status of crypto and the underlying libcrypto library. If crypto was built
with FIPS support this can be either enabled (when running in FIPS mode) or not_enabled. For other builds
this value is always not_supported.

See enable_fips_mode/1 about how to enable FIPS mode.

Warning:

In FIPS mode all non-FIPS compliant algorithms are disabled and raise exception error:notsup. Check
supports that in FIPS mode returns the restricted list of available algorithms.

enable_fips_mode(Enable) -> Result
Types:

Enable = Result = boolean()

Enables (Enable = true) or disables (Enable = false) FIPS mode. Returns true if the operation was
successful or false otherwise.

Note that to enable FIPS mode succesfully, OTP must be built with the configure option --enable-fips, and the
underlying libcrypto must also support FIPS.

See also info_fips/0.

info_lib() -> [{Name, VerNum, VerStr}]
Types:

28 | Ericsson AB. All Rights Reserved.: crypto

crypto

Name = binary()
VerNum = integer()
VerStr = binary()

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,269484095,<<"OpenSSL 1.1.0c 10 Nov 2016"">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
opensslv.h) used when crypto was compiled. The text variant represents the libcrypto library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod_pow(N, P, M) -> Result
Types:

N = P = M = binary() | integer()
Result = binary() | error

Computes the function N^P mod M.

next_iv(Type :: cbc_cipher(), Data) -> NextIVec
next_iv(Type :: des_cfb, Data, IVec) -> NextIVec
Types:

Data = iodata()
IVec = NextIVec = binary()

Returns the initialization vector to be used in the next iteration of encrypt/decrypt of type Type. Data is the encrypted
data from the previous iteration step. The IVec argument is only needed for des_cfb as the vector used in the
previous iteration step.

poly1305(Key :: iodata(), Data :: iodata()) -> Mac
Types:

Mac = binary()
Computes a POLY1305 message authentication code (Mac) from Data using Key as the authentication key.

private_decrypt(Algorithm, CipherText, PrivateKey, Options) ->
 PlainText
Types:

Ericsson AB. All Rights Reserved.: crypto | 29

crypto

Algorithm = pk_encrypt_decrypt_algs()
CipherText = binary()
PrivateKey = rsa_private() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
PlainText = binary()

Decrypts the CipherText, encrypted with public_encrypt/4 (or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

private_encrypt(Algorithm, PlainText, PrivateKey, Options) ->
 CipherText
Types:

Algorithm = pk_encrypt_decrypt_algs()
PlainText = binary()
PrivateKey = rsa_private() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
CipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the ciphertext. This is a low level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public_decrypt(Algorithm, CipherText, PublicKey, Options) ->
 PlainText
Types:

Algorithm = pk_encrypt_decrypt_algs()
CipherText = binary()
PublicKey = rsa_public() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
PlainText = binary()

Decrypts the CipherText, encrypted with private_encrypt/4(or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt(Algorithm, PlainText, PublicKey, Options) ->
 CipherText
Types:

Algorithm = pk_encrypt_decrypt_algs()
PlainText = binary()
PublicKey = rsa_public() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
CipherText = binary()

Encrypts the PlainText (message digest) using the PublicKey and returns the CipherText. This is a low level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

30 | Ericsson AB. All Rights Reserved.: crypto

crypto

rand_seed(Seed :: binary()) -> ok
Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness" built in. Normally this is when strong_rand_bytes/1
raises error:low_entropy

rand_uniform(Lo, Hi) -> N
Types:

Lo, Hi, N = integer()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator.
Hi must be larger than Lo.

start() -> ok | {error, Reason :: term()}
Equivalent to application:start(crypto).

stop() -> ok | {error, Reason :: term()}
Equivalent to application:stop(crypto).

strong_rand_bytes(N :: integer() >= 0) -> binary()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.

May raise exception error:low_entropy in case the random generator failed due to lack of secure "randomness".

rand_seed() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN_rand_range), and saves it in the process dictionary before returning it as well. See also
rand:seed/1 and rand_seed_s/0.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

Example

_ = crypto:rand_seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand_seed_s() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL's BN_rand_range). See also rand:seed_s/1.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

Ericsson AB. All Rights Reserved.: crypto | 31

crypto

Note:

The state returned from this function can not be used to get a reproducable random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

The only supported usage is to generate one distinct random sequence from this start state.

rand_seed_alg(Alg) -> rand:state()
Types:

Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strong random numbers.
See also rand:seed/1 and rand_seed_alg_s/1.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_size.

Example

_ = crypto:rand_seed_alg(crypto_cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand_seed_alg_s(Alg) -> rand:state()
Types:

Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strongly random numbers.
See also rand:seed_s/1.

If Alg is crypto this function behaves exactly like rand_seed_s/0.

If Alg is crypto_cache this function fetches random data with OpenSSL's RAND_bytes and caches it for speed
using an internal word size of 56 bits that makes calculations fast on 64 bit machines.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_size.

Note:

The state returned from this function can not be used to get a reproducable random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

In fact since random data is cached some numbers may get reproduced if you try, but this is unpredictable.

The only supported usage is to generate one distinct random sequence from this start state.

stream_init(Type, Key) -> State
Types:

32 | Ericsson AB. All Rights Reserved.: crypto

crypto

Type = rc4
Key = iodata()
State = stream_state()

Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

For keylengths see the User's Guide.

stream_init(Type, Key, IVec) -> State
Types:

Type = aes_ctr | chacha20
Key = iodata()
IVec = binary()
State = stream_state()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 bits long. IVec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for
use with stream_encrypt and stream_decrypt.

For keylengths and iv-sizes see the User's Guide.

stream_encrypt(State, PlainText) -> {NewState, CipherText}
Types:

State = stream_state()
PlainText = iodata()
NewState = stream_state()
CipherText = iodata()

Encrypts PlainText according to the stream cipher Type specified in stream_init/3. Text can be any number
of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_encrypt.

stream_decrypt(State, CipherText) -> {NewState, PlainText}
Types:

State = stream_state()
CipherText = iodata()
NewState = stream_state()
PlainText = iodata()

Decrypts CipherText according to the stream cipher Type specified in stream_init/3. PlainText can be any
number of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_decrypt.

supports() -> [Support]
Types:

Ericsson AB. All Rights Reserved.: crypto | 33

crypto

Support =
 {hashs, Hashs} |
 {ciphers, Ciphers} |
 {public_keys, PKs} |
 {macs, Macs} |
 {curves, Curves} |
 {rsa_opts, RSAopts}
Hashs =
 [sha1() |
 sha2() |
 sha3() |
 ripemd160 |
 compatibility_only_hash()]
Ciphers =
 [stream_cipher() |
 block_cipher_with_iv() |
 block_cipher_without_iv() |
 aead_cipher()]
PKs = [rsa | dss | ecdsa | dh | ecdh | ec_gf2m]
Macs = [hmac | cmac | poly1305]
Curves =
 [ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()]
RSAopts = [rsa_sign_verify_opt() | rsa_opt()]

Can be used to determine which crypto algorithms that are supported by the underlying libcrypto library

Note: the rsa_opts entry is in an experimental state and may change or be removed without notice. No guarantee
for the accuarcy of the rsa option's value list should be assumed.

ec_curves() -> [EllipticCurve]
Types:

EllipticCurve =
 ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()

Can be used to determine which named elliptic curves are supported.

ec_curve(CurveName) -> ExplicitCurve
Types:

CurveName = ec_named_curve()
ExplicitCurve = ec_explicit_curve()

Return the defining parameters of a elliptic curve.

sign(Algorithm, DigestType, Msg, Key) -> Signature
sign(Algorithm, DigestType, Msg, Key, Options) -> Signature
Types:

34 | Ericsson AB. All Rights Reserved.: crypto

crypto

Algorithm = pk_sign_verify_algs()
DigestType =
 rsa_digest_type() |
 dss_digest_type() |
 ecdsa_digest_type() |
 none
Msg = binary() | {digest, binary()}
Key =
 rsa_private() |
 dss_private() |
 [ecdsa_private() | ecdsa_params()] |
 [eddsa_private() | eddsa_params()] |
 engine_key_ref()
Options = pk_sign_verify_opts()
Signature = binary()

Creates a digital signature.

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest (plaintext).

Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3.

verify(Algorithm, DigestType, Msg, Signature, Key) -> Result
verify(Algorithm, DigestType, Msg, Signature, Key, Options) ->
 Result
Types:

Algorithm = pk_sign_verify_algs()
DigestType =
 rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
Msg = binary() | {digest, binary()}
Signature = binary()
Key =
 rsa_public() |
 dss_public() |
 [ecdsa_public() | ecdsa_params()] |
 [eddsa_public() | eddsa_params()] |
 engine_key_ref()
Options = pk_sign_verify_opts()
Result = boolean()

Verifies a digital signature

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest (plaintext).

Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4.

privkey_to_pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types:

Ericsson AB. All Rights Reserved.: crypto | 35

crypto

Type = rsa | dss
EnginePrivateKeyRef = engine_key_ref()
PublicKey = rsa_public() | dss_public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

engine_get_all_methods() -> Result
Types:

Result = [engine_method_type()]
Returns a list of all possible engine methods.

May raise exception error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_load(EngineId, PreCmds, PostCmds) -> Result
Types:

EngineId = unicode:chardata()
PreCmds = PostCmds = [engine_cmnd()]
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by EngineId if it is available and then returns ok and an engine handle. This
function is the same as calling engine_load/4 with EngineMethods set to a list of all the possible methods.
An error tuple is returned if the engine can't be loaded.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_load(EngineId, PreCmds, PostCmds, EngineMethods) -> Result
Types:

EngineId = unicode:chardata()
PreCmds = PostCmds = [engine_cmnd()]
EngineMethods = [engine_method_type()]
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by EngineId if it is available and then returns ok and an engine handle. An error
tuple is returned if the engine can't be loaded.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_unload(Engine) -> Result
Types:

36 | Ericsson AB. All Rights Reserved.: crypto

crypto

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Unloads the OpenSSL engine given by Engine. An error tuple is returned if the engine can't be unloaded.

The function raises a error:badarg if the parameter is in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_by_id(EngineId) -> Result
Types:

EngineId = unicode:chardata()
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Get a reference to an already loaded engine with EngineId. An error tuple is returned if the engine can't be unloaded.

The function raises a error:badarg if the parameter is in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()
CmdName = CmdArg = unicode:chardata()
Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engine. This function is the same as calling
engine_ctrl_cmd_string/4 with Optional set to false.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional) ->
 Result
Types:

Engine = term()
CmdName = CmdArg = unicode:chardata()
Optional = boolean()
Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engine. Optional is a boolean argument that can relax
the semantics of the function. If set to true it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success
without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
so we set this to false.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_add(Engine) -> Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 37

crypto

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Add the engine to OpenSSL's internal list.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_remove(Engine) -> Result
Types:

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Remove the engine from OpenSSL's internal list.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_get_id(Engine) -> EngineId
Types:

Engine = engine_ref()
EngineId = unicode:chardata()

Return the ID for the engine, or an empty binary if there is no id set.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_get_name(Engine) -> EngineName
Types:

Engine = engine_ref()
EngineName = unicode:chardata()

Return the name (eg a description) for the engine, or an empty binary if there is no name set.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_list() -> Result
Types:

Result = [EngineId :: unicode:chardata()]
List the id's of all engines in OpenSSL's internal list.

It may also raise the exception error:notsup in case there is no engine support in the underlying OpenSSL
implementation.

See also the chapter Engine Load in the User's Guide.

May raise exception error:notsup in case engine functionality is not supported by the underlying OpenSSL
implementation.

ensure_engine_loaded(EngineId, LibPath) -> Result
Types:

38 | Ericsson AB. All Rights Reserved.: crypto

crypto

EngineId = LibPath = unicode:chardata()
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by EngineId and the path to the dynamic library implementing the engine. This
function is the same as calling ensure_engine_loaded/3 with EngineMethods set to a list of all the possible
methods. An error tuple is returned if the engine can't be loaded.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

ensure_engine_loaded(EngineId, LibPath, EngineMethods) -> Result
Types:

EngineId = LibPath = unicode:chardata()
EngineMethods = [engine_method_type()]
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by EngineId and the path to the dynamic library implementing the engine. This
function differs from the normal engine_load in that sense it also add the engine id to the internal list in OpenSSL.
Then in the following calls to the function it just fetch the reference to the engine instead of loading it again. An error
tuple is returned if the engine can't be loaded.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

ensure_engine_unloaded(Engine) -> Result
Types:

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Unloads an engine loaded with the ensure_engine_loaded function. It both removes the label from the OpenSSL
internal engine list and unloads the engine. This function is the same as calling ensure_engine_unloaded/2
with EngineMethods set to a list of all the possible methods. An error tuple is returned if the engine can't be
unloaded.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

ensure_engine_unloaded(Engine, EngineMethods) -> Result
Types:

Engine = engine_ref()
EngineMethods = [engine_method_type()]
Result = ok | {error, Reason :: term()}

Unloads an engine loaded with the ensure_engine_loaded function. It both removes the label from the OpenSSL
internal engine list and unloads the engine. An error tuple is returned if the engine can't be unloaded.

Ericsson AB. All Rights Reserved.: crypto | 39

crypto

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

40 | Ericsson AB. All Rights Reserved.: crypto

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	Load with the ensure loaded function
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Algorithm Details
	Ciphers
	Block Ciphers
	AEAD Ciphers
	Stream Ciphers

	Message Authentication Codes (MACs)
	CMAC
	HMAC
	POLY1305

	Hash
	Public Key Cryptography
	RSA
	DSS
	ECDSA
	EdDSA
	Diffie-Hellman
	Elliptic Curve Diffie-Hellman

	Reference Manual
	crypto
	crypto
	block_encrypt/3
	block_decrypt/3
	block_encrypt/4
	block_encrypt/4
	block_encrypt/4
	block_decrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	cmac/3
	cmac/4
	info_fips/0
	enable_fips_mode/1
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	poly1305/2
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	rand_seed_alg/1
	rand_seed_alg_s/1
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	sign/4
	sign/5
	verify/5
	verify/6
	privkey_to_pubkey/2
	engine_get_all_methods/0
	engine_load/3
	engine_load/4
	engine_unload/1
	engine_by_id/1
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4
	engine_add/1
	engine_remove/1
	engine_get_id/1
	engine_get_name/1
	engine_list/0
	ensure_engine_loaded/2
	ensure_engine_loaded/3
	ensure_engine_unloaded/1
	ensure_engine_unloaded/2

