ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 10.7.2.17
March 29, 2022

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 29, 2022

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument aimto list al deprecated functionality in Erlang/OTP. It wasintroduced as of OTP 22, and have not yet
been updated with all old deprecations. Deprecations made in other parts of the documentation are of course still valid.
For more information regarding the strategy regarding deprecations see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.1.2 OTP 22

VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support is now
deprecated and has al so been scheduled for removal.

Legacy parts of erl_interface

Theold legacy er| _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of
theer| _i nt er f ace library with the use of theei library which alsois part of theer | _i nt er f ace application.
Theoldlegacy er| _i nt er f ace library has also been scheduled for removal.

System Events

The format of "System Events" as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events’,
needs to be changed.

Inthewake of thisthefunction sys:get_debug/3 that returns datawith undocumented and internal format (and therefore
ispractically useless) has been deprecated, and anew function sys:get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

1.1.3 OTP 18

erlang:now()

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now() .

1.2 Scheduled for Removal
1.2.1 Introduction

This document list all functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.2 Scheduled for Removal

1.2.2 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support will be
removed as of OTP 23. Thislimited support was formally deprecated as of OTP 22

Legacy parts of erl_interface

Theold legacy er | _i nt er f ace library (functions with prefix er | _) will be removed as of OTP 23. These parts
of erl _i nt er f ace hasbeen informally deprecated for a very long time, and was formally deprecated in OTP 22.
You typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which also
ispart of theer | _i nt er f ace application.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release
2.1.1 Windows

The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-22. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href

2.2 Building and Installing Erlang/OTP

Building

« GNU nmake

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
* Pel5

e« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

* ncurses,terncap,ortermib -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

* sed -- Stream Editor for basic text transformation.
Building in Git
Build the same way as when building the unpacked tar file.

Building on OS X
» Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
e Aninstall program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereisalist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i ¢c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

e Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface. Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/j avase/downloads. We have also tested with IBM's
JDK 1.6.0.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projectswxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsltproc -- Acommand line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdtproc2.html.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released source tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 22.3.4.25.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_ TOP variable.

$ cd otp src 22.3.4.25
$ export ERL_TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:
$./configure [options]

By default, Erlang/OTP release will be installed in /usr/ 1 ocal /{bin,lib/erlang}. If you for instance
don't have the permission to install in the standard location, you can install Erlang/OTP somewhere else.
For example, to install in /opt/erlang/ 22. 3. 4.25/{bin,lib/erlang}, use the --prefix=/opt/
erl ang/ 22. 3. 4. 25 option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests
This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/ test _server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href
href

2.2 Building and Installing Erlang/OTP

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Installing

You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-22.3.4.25 system in the SPATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

» Adding the location of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOVME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.
$ make docs

Build Issues

We have sometimes experienced problemswith Oracle'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
e http://xmigraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

* If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install thedocumentationusingther el ease_docs
target. You typically want to use the same RELEASE _ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mnesia

e Browsing the html pagesby loadingthepage/ usr/ 1 ocal / |i b/ er| ang/ doc/ erl ang/ i ndex. ht ml or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded from
* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html 22.3.4.25.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the sameway, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 22.3.4.25.tar.gz

Where<Rel easeDir > is

o <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP using meke install.

e $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstalled Erlang/OTP using make i nst al |
DESTDI R=<Tnpl nstal | Di r >.

e« RELEASE_ ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant to tailor your Erlang/OTP build and install ation, please read on for detailed information about theindividual
steps.
make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
thisyou must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href

2.2 Building and Installing Erlang/OTP

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui I d.

Configuring
The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;

o --prefix=PATH- Specify installation prefix.

+ --disable-parallel-configure - Disable parallel execution of conf i gur e scripts (parallel
execution is enabled by default)

« --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)

« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --{enabl e, di sabl e} - f p- except i ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling
this you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc
e --enabl e-nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --wth-assuned-cache-1line-size=S| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

o --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

e --wth-ssl =PATH- Specify location of OpenSSL include and lib

e --wth-ssl-incl =PATH- Location of OpenSSL i ncl ude directory, if different than specified by - -
Wi t h- ssl =PATH

e --wth-ssl-rpat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

e --with-1ibatomnm c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https:.//github.com/ivmai/libatomic_ops/.

e --disabl e-snp-require-native-atom cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If
this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using
| i bat onmi c_ops, but by passing - - di sabl e- snp-requi re-native-at on cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

e ~--enable-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSsthat do not
support dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang
VM binary. Thisis done by passing a comma separated list to the archives that you want to statically link.
eg.--enabl e-stati c-ni f s=/ home/ $USER/ my _ni . a. The path has to be absolute and the
name of the archive has to be the same as the module, i.e. ny_ni f inthe example above. Thisisalso true
for drivers, but then it is the driver name that has to be the same as the filename. Y ou aso have to define
STATI C_ERLANG { NI F, DRI VER} when compiling the .o filesfor the nif/driver. If your nif/driver depends
on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily achieved by
passing LI BS=-1 | i bname to configure.

e --without - $app - By default al applicationsin Erlang/OTP will beincluded in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependant application.

e --enabl e-gettineofday-as-os-systemtine - Forceusageof getti meof day() for OS system
time.

e --enabl e-prefer-el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

e --disabl e-prefer-el apsed-nonot oni c-ti nme-during-suspend - Do not prefer an OS
monoatonic time source with elapsed time during suspend.

e --wth-clock-resol ution=high|l ow- Try tofind clock sourcesfor OS system time, and OS

monotonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

e« --disabl e-saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

If you or your system has special requirements please read the Makef i | e for additional configuration information.
Updating configure scripts

Generated conf i gur e scripts are nowadays included in the git repository.

If you modify any confi gure.in filesor theert s/ acl ocal . m4 file, you need to regenerate conf i gur e
scripts before the changes will take effect. First ensure that you have GNU aut oconf of version 2.69 in your
path. Then execute. / ot p_bui | d updat e_configure [--no-comm t] inthe$ERL_TOP directory. The
ot p_bui I d script will verify that aut oconf isof correct version and will refuseto updatetheconf i gur e scripts
if it is of any other version.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href

2.2 Building and Installing Erlang/OTP

operationsusing the __at oni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

* TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi ¢_* builtins.

» If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat oni c_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi c_ops library isinstalled using the - - wi t h- 1 i bat om ¢c_ops=PATH
confi gur e switch.

» Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize

parallel make with the - j <num _j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Other useful information can be found at our GitHub wiki:
e http://wiki.github.com/erlang/otp

Within Git

Build the same way as when building the unpacked tar file.
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude-f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 3. tar. bz2 from
https:.//github.com/wxWidgetswxWidgets'r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

$ git clone --branch WX 3 @ BRANCH git@github.com:wxWidgets/wxWidgets.git

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.2 Building and Installing Erlang/OTP

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renpbve_prebuilt_fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui I d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp _buil d save_ boot strap will be
invoked automatically when mak e isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_buil d renove_prebuilt fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ otp_build
updat e_pri nary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ emul at or and execute:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

2.2 Building and Installing Erlang/OTP

$ (cd $ERL TOP/erts/emulator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute:
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systemsthat can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

» Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill besetto| NSTALL _PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: *****
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

#H A A A A A

* Ingtal using ther el ease target. Instead of doing nake i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All installation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / hone/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/0TP

$./Install -minimal /home/me/0TP
$ mkdir -p /home/me/bin
$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL _ROOT>

where:

e -mni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

« <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA _PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing nake i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el ati ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Running
Using HiPE
HiPE supports the following system configurations:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

2.2 Building and Installing Erlang/OTP

* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-hit and 64-bit modes should work.
* OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

» PowerPC: All 32-bit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and OS X 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
* ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e x86 in 32-bit mode: Linux, Solaris, FreeBSD
* X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).
or

1> c(Module, [native|OtherOptions]).
Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is loaded.
To add hipe options, write like this from the Erlang shell:

1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).
Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

2.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
e Build and Install Procedure
e Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
e Ingtalling
» Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
» Cross System Root Locations
e Optional Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-22. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and nake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c-ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui | d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

2.3 Cross Compiling Erlang/OTP

variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables before invoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. Thebuild of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileis highly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf. t enpl at e,anduseitinconfi gure. i n. Other filesthat might need
to be updated are;

e $ERL_TOP/ xconp/ erl - xconp-vars. sh
« $ERL _TOP/erl-build-tool -vars. sh
e S$ERL TOP/erts/aclocal.m

e $ERL_TOP/ xconp/ README. md

e $ERL _TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.
Building With configure/make Directly

)
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.3 Cross Compiling Erlang/OTP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
)

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st r ap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
(€)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- OS triplet will be created by executing $ERL_TOP/ er t s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
ert s/ aut oconf/confi g. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argumentwhenyouinvokeconf i gur e directly.
The- - xconp- conf argument can only be passedto ot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE_DI FFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing

You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure

4)

$ make install DESTDIR=<TEMPORARY_PREFIX>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

2.3 Cross Compiling Erlang/OTP

make install will instal at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - -exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/
| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When meke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)
$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE_DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ 1 ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

 -m ni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.

e -cross For cross compilation. Informs the install script that it is run on the build machine.

* <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sas! is passed as argument you will be prompted.

Y ou can now either do:

(6)

» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal]|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

or:

()
» Package the ingtallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine:

$ cd <ABSOLUTE_INSTALL DIR ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON_TARGET>

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

Building With the otp_build Script
8
$ cd $ERL TOP
9)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
aternatively:
$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Notethat <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)
$./otp build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp_build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

2.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual .

$ make release tests
or
$./otp build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

2.3 Cross Compiling Erlang/OTP

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previousy was$ERL_TOP/ r el ease/t est s/t est _ser ver and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to usetsrun er |
-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/ confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ er t s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flags to passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where <HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
e« CC- Ccompiler.

e CFLAGS- C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

e CFLAG_RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP - C pre-processor.

* CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

e LDFLAGS - Linker flags.
e LI BS-Libraries.
Dynamic Erlang Driver Linking

Note:

Either set all or none of the DED_LD* variables.

e DED _LD- Linker for Dynamically loaded Erlang Drivers.
 DED_LDFLAGS - Linker flagsto use with DED_LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Note:

Either set all or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
* LFS_LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLI B-ranli b archiveindex tool.

* AR-ar archiving tool.

« CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

e erl _xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
thecrypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

* erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (al ways) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

War ning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

2.3 Cross Compiling Erlang/OTP

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will beissued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

erl _xconp_doubl e_m ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has"regular" endianness.

erl _xconp_cl ock_gettinme_cpu_tine-yes| no.Defaultstono. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

erl _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both IPv4 and I1Pv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

erl _xconp_linux_clock gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_linux_nptl -yes| no. Defaults to yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_sigal t stack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable_fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_menal i gn - yes| no. Defaults to yes if posi x_memal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that accepts larger than
page size alignment.

er|l _xconp_code_nodel _snmal | - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

2.4 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

e Short Version

e Frequently Asked Questions

* Toolsyou Need and Their Environment
* The Shell Environment

e Building and Installing

» Development

e UsingGIT

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are till a preferred aternative if one does not have Microsoft’ s development tools and/or don’t want
toinstal Cygwin, MSYS or MSY S2.

Theinstructions apply to versions of Windows supporting the Cygwin emulated gnuish environment or the MSY S or
MSY S2 ditto. We've built on the following platforms: Windows 2012, Windows 7, Windows 8 and Windows 10. It's
probably possible to build on older platforms too, but you might not be able to install the appropriate Microsoft SDK,
Visual Studio or OpenSSL, in which case you will need to go back to earlier compilers etc.

The procedure described uses either Cygwin, MSY S or MSY S2 as a build environment. Y ou run the bash shell in
Cygwin/MSY SIMSY S2 and use the gnu configure/make etc to do the build. The emulator C-source codeis, however,
mostly compiled with Microsoft Visual C++™, producing a native Windows binary. Thisisthe same procedure aswe
use to build the pre-built binaries. Why we use VC++ and not gcc is explained further in the FAQ section.

If you are not familiar with Cygwin, MSY S, MSY S2 or a Unix environment, you' I probably need to read up a bit on
how that works. There are plenty of documentation about this online.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurances of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_22. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ er t s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory isfor common code.

We've used this build procedure for a couple of releases, and it hasworked fine for us. Still, there might be all sorts of
troubles on different machinesand with different setups. We'll try to give hintswherever we've encountered difficulties,
but please share your experiences by using the erlang-questions mailing list. We cannot, of course, help everyone
with al their issues, so please try to solve such issues and submit solutions/workarounds.

Lets go then! We'll start with a short version of the setup procedure, followed by some FAQ, and then we'll go into
more details of the setup.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
toolsareinstalled, building is quite easy. We have a so tried to make these instructions understandabl e for people with

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

href
href
href

2.4 How to Build Erlang/OTP on Windows

limited Unix experience. Cygwin/MSY SMSY S2 is awhole new environment to some Windows users, why careful
explanation of environment variables etc seemed to bein place.

Thisisthe short story though, for the experienced and impatient:

Get and install complete Cygwin (latest), complete MinGW with MSY S or complete MSY S2

e Instal Visual Studio 12.0 (2013)

* Install Microsofts Windows SDK 8.1

e Getandinstall Sun'sJDK 1.6.0 or later

e Getandinstal NSIS2.01 or later (up to 2.46 tried and working)

* Get, build and install OpenSSL 0.9.8r or later (up to 1.0.2d tried & working) with static libs.

e GettheErlang sourcedistribution (from http://www.er lang.or g/download.html) and unpack with Cygwin's/
MSYSSMSYS2'st ar .

* Set ERL_TOP to where you unpacked the source distribution
* $ cd $ERL_TOP
e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still

standing in $ERL_ TOP, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_22 toot p_w n32_22 onthelast row):

$ eval "./otp build env_win32 x64°
$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 22 /S

Voilal St art->Prograns->Erl ang OTP 22- >Er| ang starts the Erlang Windows shell.

2.4.3 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ till. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 8.1 == Visual studio 2013).

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actually it's been possiblein late R11-releases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: OK, you need VC++, but now you've started to demand a quite recent (and expensive) version of Visual Studio.
Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDhbg) is also quite usable. That's
what | used when porting Erlang to 64bit Windows. Another reason to use later Microsoft compilersis DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
VC++ version. So we should aim to use the latest freely available SDK and compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are till some problems with the dynamic linking (dynamic

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.4 How to Build Erlang/OTP on Windows

Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam emru. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC. That particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: Cygwin, MSY S or MSY S2 is the environment, which closely resembles the environment found on any Unix
machine. It's almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters,
then creates makefiles that are used by the environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, Cygwin/MSY SIMSY S2 tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/
msys_t ool s. They al do conversion of parameters and switches common in the Unix environment to fit the
native Windows tools. Most notableis of course the paths, which in Cygwin/MSY SIMSY S2 are Unix-like paths
with "forward slashes’ (/) and no drive letters. The Cygwin specific command cygpat h isused for most of the
path conversions in a Cygwin environment. Other tools are used (when needed) in the corresponding MSY S and
MSY S2 environment. Luckily most compilers accept forward slashes instead of backslashes as path separators,
but one till have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and trans ate every possible gcc option and pass correct options to cl.exe. The
principle is that the scripts are powerful enough to alow building of Erlang/OTP, no more, no less. They might
need extensions to cope with changes during the development of Erlang, and that's one of the reasons we made
them into shell-scripts and not Perl-scripts. We believe they are easier to understand and change that way.

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and also helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin/MSY SIMSY S2.

Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat realy ethical?

A: No, not really, but see this as a step in the right direction.
Q: Can | build something that looks exactly as the commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of Cygwin/MSY S/IMSY S2 and other tools do you use then?

A: For Cygwin, MSY Sand MSY S2 alike, wetry to use the | atest rel eases available when building. What versions
you use shouldn't really matter. We try to include workarounds for the bugs we've found in different Cygwin/
MSY SIMSY S2 releases. Please help us add workarounds for new Cygwin/MSY SIMSY S2-related bugs as soon
as you encounter them. Also please do submit bug reports to the appropriate Cygwin, MSY S and/or MSY S2
developers. The GCC we used for 22 wasversion 4.8.1 (MinGW 32hit) and 4.8.5 (MSY S2 64bit). We used VC++
12.0 (i.e. Visua studio 2013), Sun's JDK 1.6.0_45 (32hit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32
OpenSSL 1.0.2d. Please read the next section for details on what you need.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

2.4 How to Build Erlang/OTP on Windows

Q: Canyou help me setup X in Cygwin/MSY SIMSY S2?

A: No, unfortunately we haven't got time to help with Cygwin/MSY SIMSY S2 related user problems, please read
related websites, newsgroups and mailing lists.

2.4.4 Tools you Need and Their Environment

Y ou need sometool sto be ableto build Erlang/OTP on Windows. Most notably you'll need Cygwin, MSY Sor MSY S2,
Visual Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system and
OpenSSL. Well, here's some information about the different tools:

Cygwin, the very latest is usually best. Get al the devel opment tools and of course all the basic ditto. Make sure
to get jar and also make sure not to install a Cygwin'ish Java, since the Cygwin jar command is used but Sun's
Java compiler and virtual machine.

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
Cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the website and use it to install Cygwin. Be sure to have fair privileges. If youreonan NT
domain you should consider running nkpasswd - d and nmkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start your first bash shell, you will get an awful prompt. Y ou might also have a PATH environment
variable that contains backslashes and such. Edit $HOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and acorrect PATH. Alsodoanexport SHELL in. profi | e. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that . profi | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . profi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). You can for example do like
thisattheend of . profil e:

ENV=$HOME/ .bashrc
export ENV
. $ENV

Y ou might also want to setup X-windows (XFree86). That might be as easy as running startx from the command
prompt and it might be much harder. Use Google to find help.

If you don't use X-windows, you might want to setup the Windows console window by selecting propertiesin
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear.

There are afew other shells available, but in all examples below we assume that you use bash.

Alternatively you download MinGW and MSY S. You'll find the latest installer at:

URL: http://sour cefor ge.net/proj ects/mingw/files/I nstaller /mingw-get-inst/

To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

URL.: http://sour cefor ge.net/pr oj ectsymingw-w64/files/latest/download ?sour ce=files

Wevetried up to 1.0, but the latest version should do. Make sure you download the m ngw w64- bi n_i 686-
m ngw_<sormet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.4 How to Build Erlang/OTP on Windows

A third alternative isto download and install MSY S2 from:
URL: https://msys2.github.io/

When you've followed the instructions there, you also need to install these packages: make, perl, and tar. Y ou do
so by running the following in the msys console:

pacman -S msys/make msys/perl msys/tar

Y ou also need agcc. If you installed the 64 bit MSY S2 you run:
mingw64/mingw-w64-x86 64-gcc

And for 32 bit MSY S2:

pacman -S mingw32/mingw-w64-i686-gcc
pacman -S mingw-w64-i686-editrights
Visual Studio 2013 (Visual Studio 12.0). Download and run the web installer from:

https://www.visualstudio.com/
Microsofts Windows SDK version 8.1 (corresponding to VC++ 12.0 and Visua Studio 2013). You'll find it here:

URL: https://msdn.microsoft.com/en-us/windows/desktop/bg162891.aspx

To help setup the environment, there is a bat file, %°ROGRAMFI LES% M rosoft Vi sual Studio
12. 0\ VC\ vcvarsal | . bat, that set's the appropriate environment for a Windows command prompt.
This is not appropriate for bash, so you'll need to convert it to bash-style environments by editing your
. bash_profile.Inmy case, where the SDK isinstalled in the default directory and YPROGRAMFI LESY%is

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href

2.4 How to Build Erlang/OTP on Windows

C:\ Program Fi | es, the commands for setting up a 32bit build environment (on a 64bit or 32bit machine)
look like this (in Cygwin):

Some common paths
C DRV=/cygdrive/c
PRG_FLS=$C DRV/Program\ Files

nsis

NSIS BIN=$PRG FLS/NSIS

java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

##
MS SDK
##

CYGWIN=nowinsymlinks

VISUAL STUDIO ROOT=$PRG_FLS/Microsoft\ Visual\ Studio\ 12.0

WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"
SDK=$PRG_FLS/Windows\ Kits/8.1

WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

PATH="$NSIS BIN:\

$VISUAL STUDIO ROOT/VC/bin:\

$VISUAL STUDIO ROOT/VC/vcpackages:\

$VISUAL_STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\

$SDK/bin/x86

/usr/local/bin:/usr/bin:/bin:\
/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS:\
/cygdrive/c/WINDOWS/system32/Wbem:\

$JAVA BIN"

LIBPATH="$WIN VISUAL STUDIO ROOT\\VC\\lib"
LIB="$WIN VISUAL STUDIO ROOT\\VC\\1ib\\;$WIN SDK\\lib\\winv6.3\\um\\x86"

INCLUDE="$WIN VISUAL STUDIO ROOT\\VC\\include\\;$WIN SDK\\include\\shared\\;\
$WIN SDK\\include\\um;$WIN SDK\\include\\winrt\\;$WIN SDK\\include\\um\\gl"

export CYGWIN PATH LIBPATH LIB INCLUDE

If you're using MinGW's MSY Sinstead, you need to change the C_DRV setting, which would read:
C_DRV=/c

and you also need to change the PATH environment variable to:

MINGW_BIN=/c/MinGW/bin

PATH="$NSIS BIN:\
$VISUAL STUDIO ROOT/VC/bin:\
$VISUAL_STUDIO_ ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\
$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86:/usr/local/bin:\

$MINGW BIN:\
/bin:/c/Windows/system32:/c/Windows:\
/c/Windows/System32/Wbem:\

$JAVA BIN"

For MSY S2 you use the same C_DRV and PATH asfor MSY' S, only update the M NGW BI N:

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

MINGW_BIN=/mingw32/bin

If you are building a 64 hit version of Erlang, you should set up PATHSs etc a little differently. We have two
templates to make things work in both Cygwin and MSY'S but needs editing to work with MSY S2 (see the
commentsin the script). The following oneisfor 32 bits:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.4 How to Build Erlang/OTP on Windows

make winpath()

{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath -d "$P"
else
(cd "$P" && /bin/cmd //C "for %i in (".") do @echo %~fsi")
fi
)
make upath()
{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath "$P"
else
echo "$P" | /bin/sed 's,”\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,q"
fi
)

Some common paths

if [-x /usr/bin/msys-?7.0.dll]; then
Without this the path conversion won't work
COMSPEC="C:\Windows\System32\cmd.exe'
MSYSTEM=MINGW32 # Comment out this line if in MSYS2
export MSYSTEM COMSPEC
For MSYS2: Change /mingw/bin to the msys bin dir on the line below
PATH=/usr/local/bin:/mingw/bin:/bin:/c/Windows/system32:\
/c/Windows:/c/Windows/System32/Wbem
C DRV=/c
IN CYGWIN=false

else
PATH=/1ldisk/overrides:/usr/local/bin:/usr/bin:/bin:\
/usr/X11R6/bin:/cygdrive/c/windows/system32:\
/cygdrive/c/windows:/cygdrive/c/windows/system32/Wbem
C DRV=/cygdrive/c
IN CYGWIN=true

fi

obe otp gcc_vsn map="
k=>default

obe otp 64 gcc vsn map="
k=>default

Program Files

PRG_FLS=$C DRV/Program\ Files

Visual Studio
VISUAL STUDIO ROOT=$PRG _FLS/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG_FLS/Windows\ Kits/8.1
WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

NSIS
NSIS BIN=$PROGRAMFILES/NSIS

Java
JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

The PATH variable should be Cygwin'ish
VCPATH=

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

$VISUAL STUDIO ROOT/VC/bin:\
$VISUAL_STUDIO ROOT/VC/vcpackages:\
$VISUAL_STUDIO ROOT/Common7/IDE:\
$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib

LIB=$WIN VISUAL STUDIO ROOT\\VC\\Tib\\;$WIN KITS\\1ib\\winv6.3\\um\\x86

INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\
$WIN KITS\\include\\shared\\;$WIN KITS\\include\\um;\
SWIN KITS\\include\\winrt\\;$WIN KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

The first part of the 64 hit template is identical to the 32 bit one, but there are some environment variable
differences:

Program Files
PRG_FLS64=$C DRV/Program\ Files
PRG_FLS32=$C DRV/Program\ Files\ \(x86\)

Visual Studio
VISUAL STUDIO ROOT=$PRG_FLS32/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files (x86)\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG FLS32/Windows\ Kits/8.1
WIN SDK="C:\\Program Files (x86)\\Windows Kits\\8.1"

NSIS

NSIS BIN=$PROGRAMFILES/NSIS

Java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

The PATH variable should be Cygwin'ish
VCPATH=

$VISUAL STUDIO ROOT/VC/bin/amd64:\
$VISUAL STUDIO ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib\\amd64

LIB=$WIN VISUAL STUDIO ROOT\\VC\\lib\\amd64\\;\
SWIN KITS\\1ib\\winv6.3\\um\\x64

INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\
$WIN_KITS\\include\\shared\\;$WIN_KITS\\include\\um;\
SWIN KITS\\include\\winrt\\;$WIN KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

2.4 How to Build Erlang/OTP on Windows

Make sure to set the PATH so that NSIS and Microsoft SDK is found before the MSY S/Cygwin tools and that
Javaislast in the PATH.

Make a simple hello world and try to compile it with the cl command from within bash. If that does not work,
your environment needs fixing. Remember, there should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

e Sun'sJavaJDK 1.6.0or later. Our Javacode (jinterface, ic) iswritten for JDK 1.6.0. Get it for Windows and install
it, the JRE is not enough. If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

"PATH="$PATH:/cygdrive/c/Program Files/Java/jdkl.7.0 02/bin""

No CLASSPATHor anything isneeded. Typej avac inthebash prompt and you should get alist of available Java
options. Make sure, e.g by typingt ype j ava, that you use the Javayou installed. Note however that Cygwin's/
MIinGW'SMSY S2'sj ar . exe isused. That's why the JDK bin-directory should be added last in the PATH.

e Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases aswell.

URL.: http://nsis.sour cefor ge.net/download
Install the lot, especially the modern user interface components, asit's definitely needed. Put mekensi s inyour
path, in my case:

PATH=/cygdrive/c/Program\ Files/NSIS:$PATH

Type makensis at the bash prompt and you should get alist of optionsif everything is OK.

e OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries,
which you can just download and install, available here:

URL: http://openssl.or g/lcommunity/binaries.html

We would recommend using 1.0.2d.
* Building with wxWidgets. Download wxWidgets-3.0.3 or higher.

Install or unpack it to the pgm folder: Cygwin: DRI VE: / PATH cygw n/ opt/1 ocal / pgm MSYS:
DRI VE: /| PATH M nGW nsys/ 1. 0/ opt /| ocal / pgmMSYS2: DRI VE: / PATH nmsys<32/ 64>/ opt /
| ocal / pgm

If the wxUSE_POSTSCRI PT isn't enabled in <pat h\t o\ pgne\ wx MSW 3. 0. 3\'i ncl ude\ wx\ nsw
\ set up. h, enableit.

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

C:\...\> cd <path\to\pgm>\wxMSW-3.0.3\build\msw
C:\...\> nmake BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Or - if building a 64bit version:

C:\...\> cd <path\to\pgm>\wxMSW-3.0.3\build\msw
C:\...\> nmake TARGET_CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.4 How to Build Erlang/OTP on Windows

e Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar from within Cygwin, MSYS or MSY S2 to unpack the source tar.gz (t ar zxf
otp_src_22.tar.gz).

Set theenvironment ERL_ TOP to point to theroot directory of the sourcedistribution. Let'ssay | stood in SHOVE/
src and unpacked ot p_src_22. tar. gz, | then add thefollowingto. profi | e:

ERL_TOP=$HOME/src/otp_src_22
export $ERL_TOP

2.4.5 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally a PATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should aso have an ERL_ TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might do it...

$ cd $ERL_TOP
$ eval "./otp build env_win32°

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL TOP
$ eval $(./otp build env_win32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL TOP
$ eval "./otp build env win32 x64°

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path is
cleaned of spacesif possible (using DOS style short namesinstead), the variables OVERRI DE_ TARGET, CC, CXX, AR
and RANLI| B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/ <cygwi n/
nmsys>_t ool s/vcand$ERL_TOP/ ert s/ etc/w n32/ <cygwi n/ nsys>_t ool areaddedfirstinthe PATH.

Now you can check which erlc you have by writingt ype er | c inyour shell. It shouldresidein SERL_TOP/ er t s/
et c/wi n32/ cygwi n_tool s or $ERL_TOP/ ert s/ et c/wi n32/ nsys_t ool s.

2.4.6 Building and Installing

Building is easiest using the ot p_bui | d script:
$./otp build configure <optional configure options>
$./otp build boot -a
$./otp build release -a <installation directory>

$./otp_build installer win32 <installation directory> # optional

Now you will have a file called ot p_wi n32_22. exe or ot p_wi n64_22. exe in the <instal |l ati on
directory>,i.e. SERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href

2.4 How to Build Erlang/OTP on Windows

e $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable a so makes the compiler becc. sh, which wraps MSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

e $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you whould have the prompt.

* $./otp_build rel ease -a-Buildsacommercial releasetree from the sourcetree. The default isto put it
iNnSERL_TOP/ r el ease/ wi n32. You can give any directory as parameter (Cygwin style), but it doesn't really
matter if you're going to build a self extracting installer too.

 $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
otp_w n32_22.exe orotp_w n64_22. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $SERL_TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and makensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ release/win32/otp win32 22 /S

or

$ cd $ERL_TOP
$ release/win32/otp win64 22 /S

and after a while Erlang/OTP-22 will have been installed in C: \ Program Fi l es\erl| 10. 7. 2. 17\, with
shortcuts in the menu etc.

2.4.7 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also usesal the OTP libraries in the source tree.

If you hack the emulator, you can build the emulator executable by standingin $ERL_TOP/ ert s/ enul at or and
doasimple

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running SERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ enul at or)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

To make a debug build of the emulator, you need to recompile both beam dI | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bin/win32/erlexec.dll
cd erts/emulator

make debug

cd ../etc

make debug

+ A A A A

and sometimes

$ cd $ERL TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
youdo a

1> erlang:system info(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 22 you have built
in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path
correctly is a little bit tricky. You still need to have $SERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ erts/etc/w n32/ cygw n_t ool s beforethe actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/cygwin_tools/vc\
:$ERL_TOP/erts/etc/win32/cygwin_tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emul ator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

e Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32or$ERL_TOP/ ert s/ et c/ wi n32.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

2.5 Patching OTP Applications

* Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do_windows specific();
Other ->
do fallback or exit()
end,

That's basically all you need to get going.

2.4.8 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in Cygwin, but not
in MSYS. Thereisaproject MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
MSY S command prompt for building. Also all test suites cannot be built as MsysGIT/MSY S does not handle symbolic
links.

2.5 Patching OTP Applications
2.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestagintheapplicationresourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e An Erlang/OTP ingtallation.
» An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/

OTPinstalation.
2.5.3 Using otp_patch_apply

‘ Patching applicationsis a one-way process. Create a backup of your OTP installation directory before proceeding.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.5 Patching OTP Applications

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

| Before applying a patch you need to do afull build of OTP in the source directory. |

If you arebuildingingi t you first need to generate the conf i gur e scripts:
$./otp build autoconf
Configure and build all applicationsin OTP:

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, aso build the documentation:
$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp_patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-1 <Dir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-v -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

| The complete build environment is required while running ot p_pat ch_appl y. |

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.5 Patching OTP Applications

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl builtin/ hone/ e/ gi t / ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <I nstal | Di r >/
rel eases/ OTP- REL/ i nst al | ed_appl i cati on_versions.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system i nformation: sanity_check() onecan vaidate dependencies among applications actually loaded.

1> system information:sanity check().
ok

Please take alook at the reference of sanity_check() for more information.

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with ~G)
1>

er | understands a number of command-line arguments, see the erl(1) manual page in ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual pagein ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

%

s erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st art , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

3.1 System Principles

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start, logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl| to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Srategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nane. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

« Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Error Logging

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Name[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -
Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.
Theseadd Di r ect or i es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kernel.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile . hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual pagein Kernel
Boot script .script script(4) manual page in SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manua pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,31},[{m,f,1},{shell,eval loop,2}1}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
ogger _sasl _conpati bl etot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel logger level info
Erlang/0TP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
application: kernel
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
application: stdlib
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.74.0>},
{id,disk log sup},
{mfargs,{disk log sup,start link,[]}},
{restart type,permanent},
{shutdown, 1000},
{child type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.75.0>},
{id,disk log server},
{mfargs,{disk log server,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]
Eshell V10.0 (abort with "G)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sasl application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islistedin Listing of target_system.er|

3.3.1 Creating a Target System

It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a. r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file:

%% mysystem.rel

{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).

Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.3 Creating and Upgrading a Target System

Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FlI RST. However,
sometimes the tar file is unpacked without involving the r el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.
Creates the temporary directory t np and extractsthetar filenysyst em t ar . gz into that directory.
Deletesthefileser | andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

Createsthe directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .
Copiesthefilesepnd,run_erl ,andt o_er| fromthedirectoryt mp/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

Createsthe directory t np/ | og, which isused if the system is started as embedded with thebi n/ st ar t
script.

Createsthefilet np/ r el eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

Recreatesthefilemysyst em t ar . gz from the directories in the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

Extractsthetar filenysyst em t ar . gz into thetarget directory / usr/ | ocal / erl -t arget .

In the target directory readsthefiler el eases/ start _er| . dat a to find the Erlang runtime system
version ("5.10.4").

Substitutes %=1 NAL_ ROOTDI R%and EMX%for / usr/ 1 ocal / er| -t ar get and beam respectively, in
thefileser| . src,start.src,andstart _erl.src of thetargetert s- 5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

Finally thetarget r el eases/ RELEASES fileis created from datain thefiler el eases/ nysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

os> /usr/local/erl-target/bin/erl

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

e bin/erl (obtainedfromerts-5.10.4/bin/erl.src)

e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

0os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er | , which
inturncalsbi n/ start _er!| (roughly,start _er| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_er!| isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")
e Thereleasesdirectory ("/ usr/l ocal /erl -target/rel eases”
e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.

« Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot™).

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system creat e/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. conf i g. sr c itwill beincluded andisnot required to beavalid Erlang
termfilelike sys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. conf i g to disk
before booting the release.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makes the release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version
In this example the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Step 2. Create the application upgrade file (see the appup(4) manual page in SASL) for Pea, for example:

%% pea.appup

II2.0II’
[{"1.0",[{load module,pea lib}]}],
[{"1.0",[{load module,pea lib}]}1}.

-~

Step 3. From the directory where the file nysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Step 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"],
[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"]1}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option is used for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release:

2> target system:create("mysystem2").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.

3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobin/start:

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1l:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart"

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%% sys.config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal /erl -target/| og. Thisdirectory isspecified asanargumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Step 2. Install the release:

2> release handler:install release(Vsn).

{continue after restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/ne
[End]

The above return value and output after the call tor el ease_handl er:i nstal | _r el ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

0os> /usr/local/erl-target/bin/to _erl /tmp/erlang.pipe.2

Check which releases there are in the system:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can al so seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

Step 3. Make the new release permanent:

2> release _handler:make permanent("SECOND").

Check the releases again:

3> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"1,
old}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

-module(target system).
-export([create/1l, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o o of
o o o°

create(RelFileName)

@ of
o® o°

create(RelFileName) ->
create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)

}I
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpecl]),
file:close(Fd),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",

io:fwrite("Creating tar file ~tp ...~n", [TarFileNamel]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),
io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName, TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"1),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"]))

file:delete(filename:join([ErtsBinDir, "start"])),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])1),
copy file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preserve]),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"l),
io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~tp ...~n", [TarFile]),
extract